Protection of photosystem II against UV-A and UV-B radiation in the cyanobacterium Plectonema boryanum: the role of growth temperature and growth irradiance.
نویسندگان
چکیده
Plectonema boryanum UTEX 485 cells were grown at 29 degrees C and 150 mumol m-2 s-1 photosynthetically active radiation (PAR) and exposed to PAR combined with ultraviolet-A radiation (UV-A) at 15 degrees C. This induced a time-dependent inhibition of photosystem II (PSII) photochemistry measured as a decrease of the chlorophyll a fluorescence ratio, Fv/Fm, to 50% after 2 h of UV-A treatment compared to nontreated control cells. Exposure of the same cells to PAR combined with UV-A + ultraviolet-B radiation (UV-B) caused only a 30% inhibition of PSII photochemistry relative to nontreated cells. In contrast, UV-A and UV-A + UV-B irradiation of cells cultured at 15 degrees C and 150 mumol m-2 s-1 had minimal effects on the Fv/Fm values. However, cells grown at 15 degrees C and lower PAR irradiance (6 mumol m-2 s-1) exhibited similar inhibition patterns of PSII photochemistry as control cells. The decreased sensitivity of PSII photochemistry of P. boryanum grown at 15 degrees C and 150 mumol m-2 s-1 to subsequent exposure to UV radiation relative to either control cells or cells grown at low temperature but low irradiance was correlated with the following: (1) a reduced efficiency of energy transfer to PSII reaction centers; (2) higher levels of a carotenoid tentatively identified as myxoxanthophyll; (3) the accumulation of scytonemin and mycosporine amino acids; and (4) the accumulation of ATP-dependent caseinolytic proteases. Thus, acclimation of P. boryanum at low temperature and moderate irradiance appears to confer significant resistance to UV-induced photoinhibition of PSII. The role of excitation pressure in the induction of this resistance to UV radiation is discussed.
منابع مشابه
Stoichiometry of the photosynthetic apparatus and phycobilisome structure of the cyanobacterium Plectonema boryanum UTEX 485 are regulated by both light and temperature.
The role of growth temperature and growth irradiance on the regulation of the stoichiometry and function of the photosynthetic apparatus was examined in the cyanobacterium Plectonema boryanum UTEX 485 by comparing mid-log phase cultures grown at either 29 degrees C/150 micromol m(-2) s(-1), 29 degrees C/750 micromol m(-2) s(-1), 15 degrees C/150 micromol m(-2) s(-1), or 15 degrees C/10 micromol...
متن کاملDifferential expression of photosynthesis and nitrogen fixation genes in the cyanobacterium Plectonema boryanum.
The filamentous non-heterocystous cyanobacterium Plectonema boryanum fixes dinitrogen at a high rate during microaerobic growth in continuous illumination by temporal separation of oxygen-evolving photosynthesis and oxygen-sensitive dinitrogen fixation. The onset of nitrogen fixation is preceded by a depression in photosynthesis that establishes a sufficiently low level of dissolved oxygen in t...
متن کاملEffects of short-time alkaline pretreatment on growth and photosynthesis efficiency of endemic cyanobacterium Fischerella sp. FS 18.
Alkaline pH is one of the most important problems of our aquatic habitat. We used Stigonematalean native cyanobacterium Fischerella sp. FS 18 as our model strain, andstudied it under different alkaline pHs (7, 9 and rarely 11) under two different – short and long- time treatments (24 and 96 hours after inoculation). Spectroscopic results showed that both alkalinity and time affected growth rate...
متن کاملGrowth and development responses to UV-B exclusion in crops
UV-B radiation affects crop plants. Growing interest has been shown in studying the effectsof UV-B radiation exclusion on crops since 1993. This article summarized the generalconsequences of UV-B radiation exclusion on crop plants from the aspacts of plant morphology,growth and development. UV-B exlusion has promoting effects on plant height, internodeand leaf size. UV-B exclusion increases roo...
متن کاملProtection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium synechococcus PCC7942
The cyanobacterium Synechococcus PCC7942 was transformed with various carotenogenic genes, and the resulting transformants either accumulated higher amounts of beta-carotene and zeaxanthin or showed a shift in the carotenoid pattern toward the formation of zeaxanthin. These transformants were exposed to ultraviolet-B (UV-B) radiation, and the degradation of phycobilins, the inactivation of phot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Photochemistry and photobiology
دوره 72 6 شماره
صفحات -
تاریخ انتشار 2000